Nardostachys jatamansi Root Extract Modulates the Growth of IMR-32 and SK-N-MC Neuroblastoma Cell Lines Through MYCN Mediated Regulation of MDM2 and p53

نویسندگان

  • Snehal Suryavanshi
  • Prerna Raina
  • Rashmi Deshpande
  • Ruchika Kaul-Ghanekar
چکیده

AIM The present study evaluated the effect of ethanolic extract of Nardostachys jatamansi roots (NJet) on MYCN mediated regulation of expression of MDM2 and p53 proteins in neuroblastoma cell lines, IMR-32 and SK-N-MC. MATERIALS AND METHODS The effect of NJet on cell viability was determined by MTT; and on growth kinetics was evaluated by trypan blue dye exclusion method and soft agar assay. The expression of p53, MDM2 and MYCN proteins in response to NJet treatment was evaluated by immunoblotting. RESULTS NJet decreased the viability of neuroblastoma cells without affecting the viability of non-cancerous, HEK-293 cells. It altered the growth kinetics of the cancer cells in a dose-dependent manner. NJet down regulated the expression of MYCN and MDM2 proteins with a simultaneous increase in the expression of tumor suppressor protein p53. CONCLUSIONS The present data demonstrated that NJet regulated the growth of IMR-32 and SK-N-MC through reduction in MYCN expression that lead to down regulation of MDM2 protein and increase in p53 expression. These preliminary results warrant further in depth studies to explore the therapeutic potential of Nardostachys jatamansi in the management of neuroblastoma. SUMMARY NJet reduced the viability of human neuroblastoma cell lines without affecting the viability of non-cancerous, HEK-293 cells.NJet regulated the growth kinetics of the cancer cells.NJet decreased the expression of MYCN and MDM2 proteins and simultaneously increased the expression of tumor suppressor protein p53. Abbreviation used: NJet: Ethanolic extract of Nardostachys jatamansi MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide HPTLC: High performance thin layer chromatography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma.

The MYCN oncogene is the major negative prognostic marker in neuroblastoma with important roles in both the pathogenesis and clinical behavior of this aggressive malignancy. MYC oncogenes activate both proliferative and apoptotic cellular pathways and, accordingly, inhibition of p53-mediated apoptosis is a prerequisite for MYC-driven tumorigenesis. To identify novel transcriptional targets medi...

متن کامل

MYCN-directed centrosome amplification requires MDM2-mediated suppression of p53 activity in neuroblastoma cells.

The MYC family oncogenes cause transformation and tumor progression by corrupting multiple cellular pathways, altering cell cycle progression, apoptosis, and genomic instability. Several recent studies show that MYCC (c-Myc) expression alters DNA repair mechanisms, cell cycle checkpoints, and karyotypic stability, and this is likely partially due to alterations in centrosome replication control...

متن کامل

Anti-gene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis.

We developed an anti-gene peptide nucleic acid (PNA) for selective inhibition of MYCN transcription in neuroblastoma cells, targeted against a unique sequence in the antisense DNA strand of exon 2 of MYCN and linked at its NH(2) terminus to a nuclear localization signal peptide. Fluorescence microscopy showed specific nuclear delivery of the PNA in six human neuroblastoma cell lines: GI-LI-N an...

متن کامل

Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma.

Circumvention of the p53 tumor suppressor barrier in neuroblastoma is rarely caused by TP53 mutation but might arise from inappropriately increased activity of its principal negative regulator MDM2. We show here that targeted disruption of the p53-MDM2 interaction by the small-molecule MDM2 antagonist nutlin-3 stabilizes p53 and selectively activates the p53 pathway in neuroblastoma cells with ...

متن کامل

Ionophore + Cell Lines with the Action - Potential Na Adrenergic , Cholinergic , and Inactive Human Neuroblastoma

SUMMARY Cultured human neuroblastoma cell lines were assayed for biochemical characteristics of neuronal function. The time course of 22Na@ uptake and inhibition of uptake by tetrodotoxin sup ported this. SK-N-MC had no veratridine-dependent 22Na@ uptake. Tyrosine hydroxylase (EC 1.14.10.), glutamic acid decarboxylase (EC 4.1 .1.15), and acetyicholine contents in neuroblastoma cells were compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017